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A statistician’s perspective on biomarkers in
drug development
Martin Jenkins,a* Aiden Flynn,b Trevor Smart,c Chris Harbron,a

Tony Sabin,d Jayantha Ratnayake,e Paul Delmar,f Athula Herath,g

Philip Jarvis,a James Matcham,d and on behalf of the PSI Biomarker
Special Interest Group

Biomarkers play an increasingly important role in many aspects of pharmaceutical discovery and development, including
personalized medicine and the assessment of safety data, with heavy reliance being placed on their delivery. Statisticians
have a fundamental role to play in ensuring that biomarkers and the data they generate are used appropriately and to address
relevant objectives such as the estimation of biological effects or the forecast of outcomes so that claims of predictivity or sur-
rogacy are only made based upon sound scientific arguments. This includes ensuring that studies are designed to answer
specific and pertinent questions, that the analyses performed account for all levels and sources of variability and that the
conclusions drawn are robust in the presence of multiplicity and confounding factors, especially as many biomarkers are mul-
tidimensional or may be an indirect measure of the clinical outcome. In all of these areas, as in any area of drug development,
statistical best practice incorporating both scientific rigor and a practical understanding of the situation should be followed.
This article is intended as an introduction for statisticians embarking upon biomarker-based work and discusses these issues
from a practising statistician’s perspective with reference to examples. Copyright © 2011 John Wiley & Sons, Ltd.
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INTRODUCTION

Within drug discovery and development, biomarkers play a cru-
cial role in understanding the mechanism of action of a drug,
identifying efficacy or toxicity signals at an early stage of develop-
ment and in identifying patients likely to respond to treatment.

The aim of this paper is to review statistical issues in biomarker-
based drug development, focusing on common issues from a
practicing statistician’s perspective. The paper is structured as
follows. First, the concept and common uses of biomarkers will
be introduced and the appropriate preparations and statisti-
cal considerations for fit-for-purpose biomarker validation will
be discussed. The challenges frequently faced by statisticians in
biomarker usage will be examined, including specific issues relat-
ing to multivariate endpoints and signatures. Particular consider-
ations for the use of biomarkers in personalized health care (PHC)
and toxicity will also be covered. The final section will discuss the
appropriateness of formal biomarker qualification, closing with
more general thoughts for statisticians working in this field.

1. WHAT ARE BIOMARKERS AND WHAT ARE
THEY USED FOR?

The biomarker definitions working group[1] of the National
Institutes of Health established the following definition of a
biomarker. Biological marker (biomarker): A characteristic that
is objectively measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention.

The term ‘biomarker’ covers a very wide range of data types,
uses and applications across all stages of pharmaceutical devel-
opment. Typical examples include measurements taken from bio-
logical samples, such as cytokines in blood, or from images, such
as via FDG-PET. Some examples are given in Table I.

Several classification methods have been proposed for biomark-
ers based upon their intended application [2] or the strength of
available evidence [3, 4]. However, in statistical terms, the key dis-
tinction is between the biomarker used at a single time point
(often baseline), or as a dynamic endpoint which changes in
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Table I. Examples of biomarker use.

Biomarker Current Use Classification Qualification

HER2, EGFR, Directing treatment Predictive Biomarker Defines indication in
K-RAS mutations in oncology label, diagnostic

development required

P450 enzymes Known to affect Predictive Biomarker Can appear in label as
(CYP2D6, CYP2C9, drug metabolism risk factor. Prior testing
CYP2C19 (e.g., for NSAIDs) suggested, dose
polymorphisms) adjustment

UGT1A1, TMPT, Predisposition to Predictive Biomarker Can appear in label as
HLA-B*5701 certain toxicities risk factor. Prior testing
polymorphisms (e.g., liver, suggested, dose

bone marrow) adjustment

AB1-42 Diagnosis of prodromal Prognostic marker Used to enrich clinical
Alzheimer’s Disease trial populations.

Example of qualification
procedure

Gene signature chips Prognosis prediction Prognostic marker Diagnostic qualification
(e.g., Oncotype, in oncology (also predictive in process applies
Mammaprint) certain cases)

CRP, IL-6, TNFa in Proof of principle in Pharmacodynamic Formal qualification not
blood samples inflammatory diseases biomarker required, but fit for

purpose assay validation

FDG-PET (SUVmax) Proof of concept Pharmacodynamic Formal qualification not
Functional imaging (e.g., in tumour biomarker required, but

metabolism) collaborative
opportunities

LDL cholesterol Confirmatory trials Surrogate Endpoint Appears in label, used for
in coronary heart approval. Any such new
disease markers require

qualification

HbA1c Represents glycemic Surrogate Endpoint Appears in label, used for
control in diabetics approval. Any such new

markers require
qualification

response to an intervention. Various types of biomarker usage are
illustrated in a simple fashion in Figure 1.

1.1. Prognostic and predictive biomarkers

When the intention is to use a biomarker to explain the varia-
tion in outcomes, be this in terms of disease prognosis, treatment
response or occurrence of toxicities, then it will be considered
as a covariate in a model of this clinical outcome. The biomarker
will act as a predictor, with the aim of explaining the variation in
these responses. This prediction will be of most practical value if
it can be deduced from a baseline measurement, but in theory
predictions could be made on the basis of any time point or com-
bination of time points prior to the measurement of response.
As an illustration, the number of circulating tumour cells (CTCs)
in peripheral blood at baseline can give an indication of sur-
vival prognosis in prostate cancer, but the number of cells in the
most recent blood draw can be even more informative for the
management of patients [5].

Such fixed time-point usage of biomarkers could be described
by the term ‘cross-sectional’ biomarkers. These could be divided
into two major sets, ‘prognostic’ and ‘predictive’ biomarkers.
These often take the form of categorical variables so as to enable
the definition of biomarker sub-groups (for example those who
are positive or negative expressers of a genetic marker), although
a continuous variable could equally well be used in a prognos-
tic capacity. In statistical terms, there is an important distinc-
tion between prognostic and predictive markers as this impacts
the choice of statistical model applied during the analysis of
biomarker data. Prognostic markers can be highlighted using
models with biomarker as a fixed main effect whereas predic-
tive markers can be identified using models with an interaction
between biomarker and treatment.

Prognostic biomarkers are biomarkers that predict the progno-
sis or the likely outcome of the disease independent of the mode
of treatment. In contrast, predictive biomarkers are biomarkers
that predict the likelihood of response to a particular treatment
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Figure 1. Biomarker Endpoint Types.

or a class of treatments. As an illustration, if expression of a prog-
nostic biomarker (such as observing CTCs above a given cutoff ),
indicates a favorable outcome, then the treatment effect in a ran-
domized trial of two treatments might still be expected to be
the same in those patients who express the marker and those
who do not. In comparison, if the biomarker were predictive of
response to the investigative treatment, as for K-ras wild type in
colorectal cancer patients treated with cetuximab [6], then the
biomarker-defined group (in this case those without a mutation)
demonstrate a larger treatment effect than other patients.

Biomarkers may be both prognostic and predictive (as EGFR
and K-ras are in nonsmall-cell lung cancer, predicting response
to EGFR Tyrosine Kinase Inhibitors [7]) and a potential source of
predictive markers for specific drugs may be recognized prognos-
tic markers. Increasingly, though predictive markers such as these
are developed alongside the treatment and are related to its well
understood mechanism of action.

Prognostic markers have utility in the management of patients,
but also the early stages of pharmaceutical development, such as
target discovery or target validation. They are also useful in the
segmentation of populations, such as for setting the inclusion cri-
teria for early stages of a clinical development program. In the
mid to late stages of the clinical development program, predictive
biomarkers lend themselves to targeted clinical development, as
discussed in Section 5, and are often codeveloped as diagnostics
to identify those who are likely to respond to the treatment.

1.2. Longitudinal Biomarkers

When the change in a biomarker is the parameter that is to be
understood, explained or controlled, then a biomarker will be
considered as an endpoint. The biomarker could be used in this
sense as a marker of the drug activity to demonstrate proof of

principle and used for optimizing the dosing schedule of the drug
during the earlier phases of the development program. For exam-
ple inflammatory markers such as CRP or ESR may be used to
select a dose in rheumatoid arthritis treatment, or can form part
of a clinical composite such as DAS28, used for the same purpose.
A marker that responds to treatment intervention may be said to
demonstrate a pharmacodynamic response and can be consid-
ered as a potential dynamic endpoint which could demonstrate
the ‘therapeutic efficacy’ of the agent.

It is common to find pharmacodynamic endpoints used to
address secondary or exploratory objectives as ‘add-ons’ in large
clinical trials. Their role here may be to elucidate various scien-
tific hypotheses about the treatment, provide differentiation from
competitors or to give additional confidence to a development
decision. However, providing sufficient evidence of their utility
and relevance is established, as discussed in Section 2, biomarkers
can be used to make key prioritization or investment decisions in
their own right, especially during the translational or the proof of
concept stages of development.

Pharmacodynamic biomarkers could allude to either or both of
the safety or efficacy of a treatment. Safety biomarkers (including
those historically referred to as lab variables in clinical develop-
ment) are measured throughout preclinical and clinical stages
of development and figure prominently in decision making,
safety monitoring, safety surveillance and pharmacovigilance as
described in Section 6.

1.3. Surrogate endpoints

Pharmacodynamic biomarkers can be used as an early outcome
measure that may demonstrate some clinical benefit for the
patient and indeed a certainly degree of correlation with clini-
cal outcomes may be desired. Those markers which correlate well4
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with a widely accepted clinical outcome at both an individual
and group level could potentially act as a surrogate endpoint and
substitute for a recognized clinical endpoint, in the way that LDL
cholesterol acts as a surrogate for major cardiovascular events
in the licensing of statins. Sufficient evidence of this relationship
must be demonstrated and these cases are discussed in Section 7.
It is important to appreciate that a pharmacodynamic biomarker
can still play a crucial role in pharmaceutical development even if
the evidentiary standards required to demonstrate surrogacy are
not met, as is generally the case.

The objectives of a biomarker’s use should be clear to avoid
any misunderstanding as the same biomarker could be used in a
cross-sectional capacity in one study and in a pharmacodynamic
capacity in another. It is the context of use that defines these
terms rather than the biomarker itself. It should not be assumed
that successful use of a marker in one sense automatically demon-
strates its appropriateness for other applications. A common mis-
conception is that the evidence for a successful prognostic marker
confers on it the ability to act as a surrogate. For example, if a
biomarker is an established prognostic marker, such as prostate
specific antigen (PSA) in prostate cancer[5], this does not imply
in itself that this biomarker would be a surrogate for survival,
even though it has been shown that men with low PSA survive
longer on average. Similarly a differential reduction in a prognos-
tic marker because of a treatment does not imply that a clinical
effect from this treatment is inevitable. It may be that the mecha-
nism of the drug effect on this marker is downstream of the effect
which is needed to activate response. Whilst biomarkers can be
put to a wide variety of uses within pharmaceutical development,
caution should be applied and the utility of a biomarker seen in
the appropriate context.

1.4. Biomarker platforms

There are a large number of different technologies and sample
types that can be used to generate biomarkers, ranging from
imaging modalities such as CT, MRI or PET to molecular biomark-
ers measuring, for example, gene expression at the mRNA level,
protein concentrations, SNPs or metabolites in sample types rang-
ing from blood or saliva to cerebrospinal fluid or tumour biop-
sies. These different technologies may measure single markers,
or, in the case of ‘omic’ type technologies, may measure many
thousands of markers simultaneously.

Many variables may be accompanied by specific preprocess-
ing methods (for example, relative expression in RT-PCR or the
scaling and normalization of metabonomic data). Biomarkers may
take the form of continuous measures, ordinal scores (for exam-
ple in histopathology) or composites (as discussed in Section 4)
and the context of use will inform the most suitable form of scor-
ing. Unless this necessitates the identification of small number
of biomarker-based categories it may otherwise be of interest
to retain as much information as possible rather than simpli-
fying a measure, as might be carried out in histopathology
when choosing between the possible measures of staining area
and intensity.

2. WHAT PREPARATIONS ARE NEEDED TO
USE A BIOMARKER FOR INTERNAL
DECISION MAKING?

To confidently utilize a biomarker for robust decision making, its
value needs to have been assessed. Both the science behind the

biomarker and the ability to use the biomarker in a practical clini-
cal trial setting should be considered. Often, potential biomarkers,
which have shown promise in a preclinical setting, may be evalu-
ated in feasibility or methodology studies or via adding them on
to existing trials or using archived samples.

2.1. Assessment of science

There can be a false assumption that a small study will be able to
establish the scientific rational as well as estimate the treatment
or population differences and the associated variability. Instead,
this should be justified prior to running the study, either on the
basis of prior experience or literature reviews. Information can
be gained from careful meta-analyses using appropriate mod-
els[8]. However, for many novel biomarkers, there will be a limited
number of papers relevant to the planned context of use in drug
development and whatever evidence exists must be assessed to
establish if the assumptions can be justified. Pre-clinical data may
be valuable in building the package of evidence supporting the
biomarker and many clinical markers made by translated from
pre-clinical counterparts. Key opinion leaders who are promoting
the use of the biomarker are also often used at this point, but care
may be needed if views or published reports could potentially be
biased[9, 10]. If the science cannot be established, then the use of
the biomarker should be questioned.

2.2. Assessment of design

There are two main aspects of study design to assess when using
a biomarker; the practical feasibility of running the study and the
statistical characteristics of the marker. There are often feasibil-
ity issues that can affect the measurements or bias the results.
For example,

� One measurement may compromise another, such as tak-
ing a blood sample just prior to assessing blood flow.

� In a time course assessment, having many measurements
and assessments planned concurrently would require tim-
ings to be compromised, such as when measuring cogni-
tive function in a first in human study at the same time as
trying to accurately capture the pharmacokinetic profile of
the compound.

� Being asked the same question repeatedly in a short time
frame, for example in a pain challenge model, could induce
false differences.

� If a scoring method is subjective, then measures should be
taken to minimize bias, for example, with the use of scripted
questions, blinding or standard operating procedures.

A small pilot study can be valuable in highlighting any practical
issues, but the statistical aspects associated with the biomarker
can best be assessed in a study specifically designed for this pur-
pose. Clear objectives need to be set and these may be more
wide-ranging than purely estimating a treatment effect. These
goals may include the following:

� Comparing potential biomarkers or forms of endpoint;
� Assessing study designs, considering parallel group and

crossover options;
� Estimating variability and effect sizes;
� Considering the analysis approach.

Ultimately, a common question is ‘What sample size is required to
run a biomarker study and have confidence that the right decision
is made at the end?’
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If there is a drug that can be used as a positive control, then
a study could be set up as if it were being used to assess a new
compound, so that the variability and effect size can then be esti-
mated. However, this is often not possible, and so, it may be more
appropriate to take other approaches such as to compare healthy
volunteers with patients or use a challenge to evoke a change
that a new drug could reverse. Functional magnetic resonance
imaging (fMRI) can be used as an illustration. In the pain therapy
area, gabapentin, taken for pain relief, has been used to assess
the viability of fMRI in assessing future compounds [11], whereas
pain challenge models in healthy volunteers, such as temporal
summation [12], are also highly relevant. However, when studying
sexual function disorders, it is more practical to compare healthy
females with patients when assessing a new methodology such
as fMRI [13]. For some situations, there is no simple way of assess-
ing the desired difference in the study, and informed judgement,
for example, on the basis of animal models, will need to be used
to estimate a relevant difference. In such situations, methodol-
ogy studies can still be key in estimating the variance of the
biomarker [14].

When assessing the potential of the biomarker, the same
design should be used as planned for the subsequent clinical trial.
For example, if a four-period crossover design is planned, using
laser Doppler imaging to assess blood perfusion, then this design
should be studied rather than a simpler two-period crossover as
dropouts or period effects, such as learning or anxiety effects, may
be important. When comparing crossovers with parallel group
studies, knowledge of inter and intra-subject variability is impor-
tant to assess consistency across subjects and inform sample siz-
ing. The use of any covariate, such as a baseline value, should be
appropriately implemented to avoid any introduction of bias [15].

Once information is gained, either from including the biomarker
in a specific study or another existing study, an assessment can be
made as to whether the marker could be used in a clinical trial to
make internal decisions with confidence. If data from one study
alone has been used to obtain estimates of variance and desirable
differences then this may carry a greater level of risk, compared
with the use of a meta-analysis. The level of confidence needs to
be fit for purpose, but all aspects of assay development should be
considered, as has been well summarized by Lee et al. [16]. For
early development, this may be less rigorous than for Phase III
confirmatory studies, but this preparation should be sufficiently
robust such that biomarkers can be confidently used to select
those compounds with early promise from those with less value.

3. WHAT ARE THE CURRENT CHALLENGES OF
BIOMARKER ANALYSIS?

Despite significant advancements in biological understanding
and statistical methodology, inference from biomarker analysis
is posed with many practical and statistical challenges that are
fundamental to the experimental analysis. Sources of variability,
missing data, bias and confounders should be considered.

3.1. Sources of variability, bias, and confounding

Unbiased estimation of the relationship between the biomarker
and treatment effect depends on multiple factors and sources
of variability may arise from the biospecimen or relate to the
technology applied for quantitation of the marker [17, 18].
Lack of quality standards and routine quality assessments of
biospecimens directly contribute to the measurement errors
[19]. There should be adequate consideration on experimental

design in identifying factors that may confound [20, 21] such as
the following:

� Patient-related factors:
ı Individual factors such as genetic composition, race,

age, and comorbidities;
ı Social and habitual factors, such as smoking (even

when passive [22]), physical fitness and diet;
ı Biological variation within a single patient, such as diur-

nal variation;
� External factors:
ı Pre-analytical variation in sample collection and fixa-

tion practices;
ı Variation between laboratories, readers and batch runs;
ı Technical precision of the assay;

The levels of inter or intra-patient variability or the analytical
(observer, batch or laboratory) variability in biomarker assess-
ments can often be higher than the assay variability, leading
to inconsistent results for the same biomarker across different
biomarker studies [23, 24]. Studies reporting new methods in the
absence of existing validated assays, such as high-dimensional
gene signatures using reverse transcription PCR (RT-PCR)[25] or
the use of in-house assays such as HercepTestTM, can yield vari-
able results, too [26, 27]. It can be difficult to determine if differ-
ences are meaningful or because of random error when there is
this lack of a gold standard.

Analytical variability can be accounted for if complete infor-
mation on the reader, batch and laboratory are available to the
biomarker statistician, allowing the components of variation to be
assessed. However, pre-analytical variation (from sample draw to
assay) is harder to quantify and potentially confounds the ana-
lytical assay variability further [28]. These factors can lead to mis-
classification of biomarker levels resulting in false positive or false
negative associations. The likelihood of these eventualities should
be considered when powering trials using biomarker defined sub-
groups [29]. Therefore, explorations to understand variations aris-
ing from batch runs, sampling practices, natural diurnal variation
or latent biological variability of a given biosample will be impera-
tive to provide unbiased estimates. Robust statistical methods for
analysis of biomarkers measured with batch/experiment-specific
errors are provided by Long et al. [30].

In certain biomarker utility trial designs, different treatment
options may be assigned to patients depending on their
biomarker expression. In such a study, while treatment assign-
ment may be randomized (for example, between an assign-
ment that considers the biomarker and one that does not [31]),
comparisons between the biomarker defined groups are a non-
randomized comparison. Bias can arise, especially in open-label
studies, for several reasons [32]:

� Verification bias because of the choice of locally available
assessment methods [33]

� Patient selection bias, for example, patients with breast
cancer family history, may not consent to BRCA DNA testing
[34]

� Treatment allocation bias, if treatment assignment is based
on a subjective assessment of the biomarker, as in some
histo-pathological endpoints

Blinding may also be difficult in such a setting, and so, any co-
interventions applied differently to study groups will also have
an effect on the overall outcome. Ability to deal with such bias4
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is limited to the amount of information available to the statisti-
cian. Another practical consideration is the length of time over
which sampling and analysis may take place. Signalling pathways
are highly cross-networked and various synergisms, antagonisms
and induced resistance can obscure the relationship between a
marker and response to the drug [35]. The effect is pronounced
in long term studies where the patients’ molecular profile is sub-
ject to change, resistance mechanisms can develop, and the treat-
ment response may no longer be the same as when the patients
were first exposed to the treatment. The emergence of acquired
EGFR resistance mutations and other molecular and histological
aberrations on EGFR-TKI treatment is one example [36].

Retrospective analyses offer further challenges and are often
not adequately powered if the trial was not designed with these
objectives in mind. It is important for the statistician to com-
municate the implication of underpowered analysis and set real-
istic expectations with clinicians. Further, if the objectives are
not prospectively defined then the validity of such analyses can
be questioned. Uncertainties can exist in situations where sam-
ples have been collected retrospectively, but biomarker analy-
ses are carried out prospectively according to defined objectives.
Regulatory opinion on such activities has varied, as in the case
of panitumumab [37]. Although predefined analyses are the
ideal, such retrospective–prospective analyses may require fur-
ther debate.

3.2. Sources of missing data

It is not uncommon to observe a greater proportion of missing-
ness in biomarker data compared with clinical data. Missing data
can arise because of many reasons, especially where biological
sampling is concerned:

� Inaccessibility of tissues (as in lung cancer)
� Low consent rates for optional samples
� Lack of residual tissue in complete responders
� Poor quality of fixation in archival samples [28]
� Patient drop-outs due to non-response or toxicity

Such practical problems [38] result in the challenge of small evalu-
able sample sizes, where numbers can be too small for convincing
validation of the modelling results in the full target population.

The likely missing data mechanisms should be considered and
appropriate assumptions made, especially if missing data impu-
tation methods are adopted. For example, sample analysis errors
may not be related to the biomarker value, but the willingness to
consent to a sample may be related to a subject’s wellbeing.

Unfortunately it is not uncommon to find that data quality
issues can occur due to a lower priority being given to the han-
dling of exploratory endpoints compared to recognized clinical
ones. Data management practices should be considered to be
just as important for biomarker data and the existence of data
standards is highly beneficial in the course of a development
program.

Clearly, there are many complexities for a statistician working
with biomarkers and further challenges remain that could be the
focus of future research (Table II).

4. HOW DO WE HANDLE LARGE NUMBERS
OF BIOMARKERS?

Recent years have seen the development of a number of new
high-dimensional technologies allowing the study of several
thousand separate markers from a single biological sample. These
include genetics, genomics, proteomics, and metabonomics, and
more recently, Next Generation Sequencing of the entire human
genome. Scientifically, these have allowed us to understand
in detail at a molecular level the processes of disease and
response to treatment and identify biomarkers that can iden-
tify or predict these changes. For example OncotypeDxr and
MammaPrintr are commercially available tests based on 21 and
70 genes, respectively, for predicting the likelihood of recurrence
of breast cancer.

4.1. Adjustments because of multiplicity of endpoints

When the purpose of an analysis is to identify those biomarkers of
interest amongst a large number of potential markers, the major
statistical concern is multiplicity. Given the number of genes or
proteins often studied, we would expect to observe some strong
correlations with outcome by chance alone, whilst traditional
methods for addressing multiplicity, such as the Bonferroni cor-
rection, will be too conservative. The False Discovery Rate (FDR)

Table II. Future challenges.

i. There is often little chance to observe biomarkers in patient populations prior to using them in early clinical
development. What opportunities exist to reengineer the traditional clinical programme so that the learning phase
around a biomarker may be supplemented, without delaying the overall clinical programme for the drug?

ii. New markers of drug toxicity are emerging preclinically. What study designs can be used to translate these into
man given that the sort of preclinical studies used to validate them are not feasible to conduct in humans?

iii. Many technologies suffer from a ‘batch effect’ and show a correlation with sample quality. What pre-processing
techniques can be developed to counteract these effects, so that we are focusing on measuring true biology rather
than artifacts?

iv. Next Generation Sequencing has moved the degree of dimensionality by several orders of magnitude and is now
becoming affordable for regular use. How, both practically and analytically, can we cope with this deluge of data?

v. Effective ways, possibly Bayesian, could be developed to build existing pathway knowledge, both in terms of the
interrelationship of genes and their impact, into data analyses.

vi. When identifying potential biomarkers for PHC, interaction analyses typically have low power,
especially in the presence of many potential markers. How can such markers best be reliably identified?

vii. As PHC becomes more common the processes for gaining approval of a drug, diagnostic and
biomarker may become more burdensome. How can the demonstration of this evidence be streamlined?

Pharmaceut. Statist. 2011, 10 494–507 Copyright © 2011 John Wiley & Sons, Ltd.
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[39, 40] provides an alternative view by estimating the proportion
of genes that are false positives. Permutation testing of a sum-
mary statistic can also be a powerful tool to generate a global
test of the association between the set of markers being studied
and outcome.

Significance Analysis of Microarrays (SAM) [41] utilizes data on
many thousands of genes by adapting standard test statistics to
incorporate an additional common parameter into the variability
term within the test statistic for each gene, allowing information
on variability to be shared across genes. This is especially valu-
able in situations with small sample numbers, where an individual
test’s variability may be poorly estimated on a limited number of
degrees of freedom.

Filtering genes or proteins prior to analysis can remove a large
number of false positives, whilst still leaving the majority of inter-
esting results, reducing the false discovery rates for these genes of
interest. Approaches to filtering can include a combination of sim-
ple statistical methods such as requiring a certain range or max-
imal level of expression; technology based methods measuring
the quality of the measurements of each gene [42]; or incorporat-
ing biology by restricting the analysis to a set of candidate genes
with a pathway link to the biology being studied.

As with univariate markers, the interpretation of results to iden-
tify genes of interest is often a combination of statistical signifi-
cance and a scientifically relevant effect. The 2D FDR [43] provides
a way of formalizing this, which has been further developed to a
3D FDR [44] by also incorporating a quality measure.

4.2. Composites and multivariate analyses

Combining large numbers of biomarkers can also be highly infor-
mative. The adage ‘a picture is worth a thousand words’ is as true
with highly multidimensional data as with much simpler data,
the challenge is that the pictures become harder to draw. As
an exploratory analysis technique, Principal Components Analysis
(PCA) offers a quick overall view of the main features within the
data. This can aid in identifying any groupings, indicates covari-
ates such as batch or reagent effects or other processing parame-
ters that will need to be incorporated into the analysis, and gives
a very good indication of the chances of observing a treatment
effect from either univariate or multivariate modelling. Clustering
can provide much of the same information, but needs to be inter-
preted with care, considering that it is based on the assumption
that there are clusters within the data. Typically there is an under-
lying continuous population and clustering can often hide more
subtle relationships between what come to be defined as clusters.

A wide variety of supervised multivariate predictive modeling
techniques are available, including regression-based approaches
such as Partial least Squares (PLS) [45], proximity-based meth-
ods such as Nearest Neighbours [46], tree-based methods such as
Random Forests [47], distance-based approaches such as Support
Vector Machines (SVM) [48] and many more.

As well as generating predictive multivariate models as ‘black-
boxes,’ understanding the variables driving response within these
models is also key. In practice, this may enable development of a
simpler or more interpretable, but still equally predictive, model
that may be easier to communicate, implement and work with
in the future. For example, the OncotypeDx assay is expressed
as a linear combination of six summary biological areas. For
some methods, these can be naturally visualized through param-
eter estimates. Random forests implements a variable importance

methodology that can generically be applied to multivariate
models derived using any technique.

To address questions around best practice for predictive
biomarker modeling, the FDA recently published the results of
its Micro-Array Quality Control (MAQC II) initiative [49], which
compared the predictive performance of models independently
generated by a number of analysis teams on a common collec-
tion of data sets. Key conclusions included that although different
approaches may generate highly distinct models, the predictive
performance of these models may be remarkably similar irrespec-
tive of the differing methodologies applied. In fact, overall the
major driver of model performance was found to be the expe-
rience and proficiency of the analysis team. MAQC II also high-
lighted that different clinical endpoints represent very different
levels of classification difficulty, so that whilst some data sets read-
ily generated highly predictive models, others appeared to have
little or no predictive content despite being submitted to a bat-
tery of different approaches. MAQC-II pointed out that to provide
clinical benefit it is not sufficient for a gene expression model
to demonstrate some predictivity, it must demonstrate bene-
fit beyond what would be possible using more readily available
clinical variables alone.

Multiplicity can be a challenge throughout the entire discov-
ery and development process. A number of candidate biomark-
ers may be studied within a single clinical trial. These markers
may often be measuring the same biology, for example, different
genes on a pathway known to be relevant to the drug’s mode of
action, or even measuring different modalities of the same gene,
for example, DNA, mRNA, and protein, so can often be corre-
lated with each other or confounded with other covariates. This
makes careful planning of the analysis and interpretation of these
results, including bringing in additional scientific information to
strengthen the belief in any observed relationships, critical to
be able to make robust conclusions that can be reproduced in
future trials.

Although high dimensional data has required the development
of new statistical approaches, classical statistical approaches are
more important than ever, as discussed in Sections 2 and 3. Study
design is critical, as is visualization, understanding data quality
and its impact on subsequent analyses. These are typically more
challenging than in a univariate situation where a simple plot may
tell the story, but their complexity and the subtle influence they
can have on conclusions make following these good statistical
principles even more important.

5. WILL BIOMARKERS MAKE PERSONALIZED
MEDICINE A REALITY?

5.1. Personalized health care examples and potential

Personalized health care offers the potential to identify patients
more likely to derive benefit from treatment and as such is of
great interest to Pharmaceutical companies, Regulatory Authori-
ties and Health care Providers. The use of biomarkers is an integral
part of the development of PHC and has experienced substan-
tial growth in recent years [50]. Many companies are now rou-
tinely collecting biomarkers within their development programs.
Aside from leading to safer and more effective treatments, the
use of biomarkers may also help to reduce the numbers com-
pounds failing in late stages of development by helping to explain
unexpected variability in response to treatment.5
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The application of biomarkers to PHC has led to more
informed prescribing practices for a number of drugs such as
trastuzumab [51] (based on HER2), panitumumab [37] (EGFR),
warfarin [52] (CYP2C9) and abacavir [53] (HLA-B*5701) amongst
others. Biomarkers have also enabled the continued develop-
ment of new drugs by facilitating the identification of a smaller
population of patients [54]. However, the number of successes
in PHC remains limited, highlighting the need for further tech-
nological, methodological and operational research. The devel-
opment and application of new analysis methods and tools will
enable more efficient identification of clinically relevant biomark-
ers, the design of confirmatory and exploratory biomarker studies
and the informed strategy for biomarker integration across drug
development programs.

The use of Biomarkers in PHC typically refers to predictive fac-
tors in determining the outcome of treatment, as discussed in
Section 1, and these should be studied in a combined model that
includes all subgroups to provide consistency with any overall
models. This retains the ability to study treatment effects within
each group. It should be recognized that biomarker-defined sub-
groups are generally not randomized comparisons and responses
may relate to other clinical covariates that correlate with the
biomarker. As such it is often of further interest to investigate the
relationship between biomarkers and known clinical predictors.

5.2. Biomarker study designs

A number of study designs have been proposed for assessing the
utility of prognostic and predictive biomarkers in PHC [55–57].
The optimal design depends on the level of prior knowledge
relating to the biomarker effects and the proposed application.
Statisticians are key in interpreting earlier phase findings on the
prevalence of biomarkers and accuracy of assays and incorporat-
ing this knowledge into the design of confirmatory studies as the
size and efficiency of designs can vary greatly [29, 58, 59]. Where
biomarker effects are known or well understood, the purpose of
the study is to confirm the effects and is typically prospectively
designed.

The targeted or enriched design involves a prescreening step
whereby patients are selected for the study based on biomarker
status. Patients who test negative are excluded from the study
whereas biomarker positive patients are randomized to one of
the treatment groups. This can result in smaller studies when the
effect of treatment is greater in the positive group, although a
wide number of patients may still need to be screened.

The stratification design is less restrictive as all subjects are allo-
cated to groups on the basis of biomarker status at screening,
then randomized to treatment. This design gives more complete
knowledge as information on the treatment effect in the marker
negative group is collected, allowing the operating characteris-
tics, such as sensitivity and specificity, of the biomarker to be esti-
mated. Both of the aforementioned designs are practical when
the study is required to test a single hypothesis relating to a
known marker. However, it is common to have multiple objec-
tives involving the evaluation of a treatment effect in the entire
study population as well as in subpopulations. One approach for
this type of study is based on an adaptive design [60]. Enrolled
patients are randomized to treatment groups and the treatments
are compared as part of a primary objective of the study. If the
study fails to meet the primary objective (i.e., there is no differ-
ence in the treatments), then patients are subdivided into groups
on the basis of biomarkers and a comparison of treatments is

performed within these groups. As multiple statistical tests are
performed in this approach, the overall false-positive error rate
and needs to be controlled. Other adaptive approaches have
been suggested where the sub-group has not been identified at
the outset (adaptive signature design [61]) or where the appropri-
ate cut-off for defining biomarker status has not been established
(adaptive threshold design [62]).

Whilst much research has taken place on the design of confir-
matory studies, most biomarker research remains exploratory for
generating hypotheses that can be tested in future studies. How-
ever, the limited sample size of such studies and need to control
the false positive detection rate when many potential markers are
considered severely restricts the ability to detect biomarkers with
moderate effects. One of the key challenges with regards to the
use of biomarkers in PHC is the lack of power to identify new
biomarkers in exploratory studies. Statisticians have a major role
to play in optimizing exploratory research though the develop-
ment and application of new analysis methods, study designs and
the use of other data resources and in the detailed reporting of
studies of predictive markers [26].

5.3. Diagnostic development

In many ways, the development and approval process for a diag-
nostic is similar to that of a new therapeutic agent, whereby the
utility of the diagnostic must be demonstrated prior to approval.
The statistician plays an important role in determining the per-
formance characteristics of the diagnostic in the proposed tar-
get population such as the sensitivity, specificity, positive and
negative predictive value, as well as capturing the conditions
under which the diagnostic has been evaluated and developed.
There are also a number of diagnostic-specific activities that must
be undertaken [63], including the definition of the optimal cut-
off for biomarkers on a continuous scale, and the evaluation of
the repeatability and reproducibility of the biomarker assay. The
statistician can ensure the validity of the entire development
process by understanding and quantifying the factors that may
impact the performance of the diagnostic. Where a companion
diagnostic is being developed in conjunction with a drug and
is a requirement for approval, good coordination of the code-
velopment process is critical. As biomarkers may be identified
during the course of a drug development program diagnos-
tics development often lags therapeutic development and can
lead to a delay in the drug approval unless codevelopment pro-
grammes are in place that meet the needs of both diagnostic and
drug development.

6. WHAT CAN BIOMARKERS TELL US ABOUT
DRUG TOXICITY?

Specific, sensitive and predictive safety biomarkers (SBMs) are
required in pharmaceutical research and development to allow
early detection of toxicity and the assessment of human risk.
SBMs represent a crucial element of a comprehensive PHC
approach to limit exposure of susceptible patients to drugs.

The strategy and approaches to the identification and qualifi-
cation of biomarkers for safety is as follows:

1. Preclinical qualification of biomarkers, including the mechanis-
tic understanding of the relationship between the biomarker
and organ damage. Emphasis is toward markers that have a
clear signal prior to damage becoming irreversible.
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5
0

1



M. Jenkins et al.

2. Translation of models and appropriate thresholds from the
preclinical species to humans.

3. Clinical qualification of the biomarker in at-risk populations
and in prospective studies covering the course of symptom
development.

The role of safety biomarkers is to minimize potential risk and is
the antithesis of efficacy biomarkers that are used to maximize
potential benefit.

A lack of specific and sensitive mechanistic SBMs and the devel-
opment of their respective assays for human samples are regu-
larly delaying drug development programs. This is especially the
case when a histo-pathological signal such as testicular toxicity is
seen in preclinical toxicology studies, but cannot be adequately
monitored in humans.

Many of the SBMs that have been used in clinical trials and in
clinical practice for many years are markers of severe organ dam-
age. For example, serum creatinine is a late marker of nephrotox-
icity that does not reflect rapid changes in renal function and up
to 2/3 of the nephron function must be lost before this marker
shows significantly increased levels indicative of renal injury [64].
The correct assessment of kidney function is important both for
dosage adjustment of renally excreted drugs and for early detec-
tion of drug nephrotoxicity. This is largely reversible if the offend-
ing agent is discontinued. Similarly bilirubin and the enzymes AST
and ALT lack specificity as markers of liver function and cannot
discriminate between transient effects and the development of
fulminant liver disease [65, 66].

The realization that companies working in isolation could not
deliver predictive SBMs led regulators, particularly the FDA and
EMEA, to encourage the creation of enabling frameworks under
which private industry could partner with regulatory authorities
to advance the development and qualification of safety biomark-
ers for drug development [67–71].

6.1. Preclinical qualification

It is important during the biomarker evaluation process that
stakeholders seek agreement on which critical experiments are
needed to test that a biomarker meets specific performance
claims; how new biomarkers and traditional comparators will
be measured and how the resulting data will be merged, ana-
lyzed and interpreted [72]. This includes reaching consensus on
the histopathological evaluations for assessing biomarker perfor-
mance, the optimization of sample collection and preparation;
and the implementation of blinded studies to minimize bias while
performing histomorphological assessment.

The standard for the determination of organ (e.g., kidney) tox-
icity in the rat is the careful examination of organ toxicity by
a qualified toxicological pathologist. Although highly accurate,
this determination is not perfect, as pathologists cannot examine
every possible section of an organ, molecular signals may pre-
cede the ability to observe structural damage, and some level of
variability on an individual animal-by-animal basis between the
subjective evaluations of pathologists is expected.

When assessing the relative performance of safety biomarkers
statistical considerations may include the following [72]:

� Analyses should be based upon on a set of samples
for which all the biomarkers being compared have been
measured.

� Multiple supportive analyses may be appropriate based
upon the level of confidence in injury determination.

Performing an analysis non-selectively using all data is
objective, but in addition an ‘exclusion’ subset where only
samples with the highest level of confidence in the injury
determination are considered (for example excluding ani-
mals treated with a known organ toxicant) may be valuable.
Although experience suggests that generally both types
of analyses yield similar comparative performance among
biomarkers, a full data analysis can yield higher thresholds,
and thus lower sensitivity, than exclusion analysis for the
same level of specificity. As such the ‘exclusion’ analysis
might be preferable for setting thresholds, thus also allow-
ing for the detection of markers that signal before the onset
of histopathological effects.

� If testing a hypothesis specified a priori then it is not nec-
essary to adjust for multiple testing. However in instances
where there is not this prespecification adjustments for
multiple testing are necessary.

� Receiver operating characteristic (ROC) curves are useful to
depict sensitivity and specificity across all possible decision
rules. ROC curve area under curve (AUC) is a useful metric
for the statistical assessment of relative performance as it is
easily interpreted and allows for statistical significance tests
indicating that one marker outperforms another.

6.2. Preclinical to clinical translation

Preclinical qualification is relatively straightforward and uses data
generated using known organ toxicants. New compounds that
cause a similar degree of biomarker change and associated
pathology as known toxicants with insufficient safety margin will
not progress to clinical studies. It is clearly not acceptable in
the pursuit of safety biomarker qualification to place patients in
clinical trials at additional risk.

The approach to assessing translation with the Animal Model
Framework (AMF) project being conducted under the auspices
of the ABPI [73] is to combine preclinical and clinical data to
determine the sensitivity, specificity and predictive value of safety
pharmacology core battery models assessing cardiovascular, cen-
tral nervous system and respiratory effects. This collaborative
effort is necessary because the majority of compounds that
progress to man have negative signals in both the preclinical and
clinical models. For example, only 15 of the 109 compounds that
were assessed in the conscious dog telemetry model and evalu-
ated in the single ascending dose first in man study had a clinically
relevant change observed in QTc [74]. As such, when considering
a threshold such as a 6% change in mean QTc relative to vehi-
cle, confidence in the ability to judge the specificity (estimated at
80%) is much higher than that in the level of sensitivity (75%).

The primary objective of the AMF project is to quantify the
properties of the current Safety Pharmacology models, with a sec-
ondary objective of refining the thresholds used to define a pre-
clinical positive. In particular, the positive and negative predictive
values associated with different thresholds are to be considered.
Although sensitivity and specificity are properties of the test sys-
tem, the negative and positive predictive values depend upon
the prevalence of true clinical positives and negatives among the
compounds being assessed in the preclinical model [75].

6.3. Clinical qualification

The clinical qualification of safety biomarkers in man is less
straightforward because verification of organ toxicity in most cir-
cumstances is not possible. In this case, methods that can assess5
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the performance of SBMs in predicting organ toxicity in the
absence of a gold standard are required [76, 77] and the use of
Bayesian methods is likely [78, 79].

There are already public–private precompetitive partnerships
established with an interest in searching, validating and qualify-
ing safety biomarkers for use in predicting drug-induced organ
injury (kidney, liver, and vascular) in the development of new
medicines. Several examples are underway including the Predic-
tive Safety Testing Consortium [67], as part of the Critical Path
initiative and the SAFE-T consortia [70] under the Innovative
Medicines Initiative.

Currently, laboratory parameters are used to indicate kidney
injury (serum creatinine, blood urea nitrogen) and liver injury
(AST, ALT), but the performance of these as safety biomarkers is
poor. For example, by the time that serum creatinine indicates
drug induced kidney injury, a high degree of loss of kidney func-
tion has already occurred [80, 81]. It is hoped that the work of
the SAFE-T and PSTC group can help to validate and qualify new
safety biomarkers for use in identifying unsafe drug candidates at
an earlier stage.

Qualifying safety biomarkers will focus on evaluating a set of
biomarkers in studies of drugs that are known to cause specific
injuries. The objective will be to identify individual or panels of
biomarkers that are more sensitive to drug induced injury without
losing the specificity of the current clinical laboratory markers. It is
also hoped to identify biomarkers that indicate injuries to specific
areas and functions of each organ [82].

7. ARE THERE SITUATIONS WHERE
BIOMARKERS REQUIRE FORMAL
QUALIFICATION?

In certain situations, it may be desirable for biomarkers to have
achieved some form of peer reviewed acceptance in order to
demonstrate that the evidence collected is meaningful and reli-
able. Both the FDA (qualification process for drug development
tools) [83] and EMA (qualification of novel methodologies and
biomarkers) [84] have introduced guidance, at least in draft, for
a form of biomarker qualification. These processes can result in
a regulatory opinion on the acceptability of a biomarker for a
particular use and can give advice on the path up to this point.
Clearly the notion of demonstrating a good base of evidence for
biomarker-based claims is sensible. However, as most biomarker
usage is purely to aid understanding during the development
program there are only certain circumstances where this formal
process might be utilized, such as in the contexts of PHC or
toxicity screening.

7.1. Is demonstrating surrogacy necessary?

The idea of a ‘surrogate biomarker’ and the required levels of evi-
dence, has been much discussed [3] and was previously regarded
as the aspiration for a qualified biomarker. This is often diffi-
cult or unrealistic [85, 86] and so objectives are now changing.
To demonstrate that a biomarker could substitute for a clinical
endpoint it is necessary to show that treatment effects on the
biomarker are related to treatment effects on the recognized end-
point at a group, as well as an individual level [87]. As such a large
number of randomized controlled trials where both endpoints
are measured are required and this can be challenging to com-
pile. This does not imply that the relevance of many biomarkers
has not been demonstrated, just that this level of qualification is

rarely necessary as biomarkers are seldom used as primary end-
points in confirmatory trials. The context of biomarker use may
also not be one of broad application given that the endpoint may
be mechanistically related to only a small class of compounds.

Nonetheless, there may still be reason to investigate the asso-
ciation between a biomarker and a relevant clinical endpoint. It
can often be of interest to consider how the effect size seen in
a small study with a short term biological endpoint may trans-
late to a proposed future study, for example when moving from
a tumour size-based endpoint to a survival based endpoint in
oncology trials. An idea of this relationship will aid design and
planning and allow calculations of the likely chance of success in
the next phase of development [88, 89]. To develop this under-
standing some of the methods developed to demonstrate surro-
gacy can prove useful for the statistician to be aware of, except
that the body of trials considered would likely be restricted purely
to the drug class and specific disease indication of interest (can-
cer type in this instance), rather than seeking to show a very broad
relationship.

Statistical methods for the demonstration of surrogacy have
been well reviewed elsewhere[90, 91]. Methods have developed
from the work of Prentice [92] and Freedman [93] to now focus on
meta-analytic techniques [94–96], it having been recognized that
early methods were restrictive. Buyse, Molenburghs, Burzykowski
et al. [97–99] have developed meta-analytic techniques that can
be utilized for the sort of informal comparisons described in the
previous text.

Given the many challenges [100], successful examples of sur-
rogates are rare and although HIV offers the examples of CD4
or RNA copy number [2, 101] many recognized surrogates such
as blood pressure are endpoints that have been in use since
before such qualification methods were suggested. Oncology has
attracted attention for several meta-analyses [95, 102] as sur-
rogates for overall survival could give great benefit, however
the strength of relationship for endpoints such as progression-
free-survival varies by class and indication, emphasizing the
context-dependent nature of surrogate evaluation.

Glycated haemoglobin (HbA1c), which represents glycemic
control over a period of time in diabetes patients, offers an illus-
tration of some of the challenges. Although HbA1c is a rec-
ommended surrogate endpoint in diabetes [103], it could not
demonstrate the cardiovascular risk related to rosiglitazone [104],
and the drug was subsequently restricted. It should be recognized
what a surrogate endpoint can accurately represent and safety
outcomes data can still be paramount. Such cardiovascular event
data is now often a requirement in many areas.

7.2. Qualification of other biomarker types

Although internal pharmacodynamic markers do not require for-
mal assessment there are other circumstances where qualifica-
tion could be required or encouraged. Biomarkers may still play
a role in a confirmatory trial or drug label if they are used in
a PHC capacity to identify those who benefit from a treatment.
(Examples are listed on the FDA pharmacogenomic website [105],
such CYP2C9 for defining poor metabolizers in the celecoxib and
warfarin labels).

In many situations, the marker itself is inherently related to
the assay used to measure it and new devices must be qualified.
Recent FDA guidance [106] discusses simultaneous submissions
of therapeutic products and in vitro companion diagnostics, but
does not clarify the expectations on biomarker qualification in
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this instance. This could be clarified, however the FDA biomarker
process does appear to be aimed towards endpoints of wide
applicability. Given that a predictive marker is likely to be related
to drug mechanism this could not be said to fall into such a
class of endpoints. In fact, sharing such information could jeop-
ardize competitive advantage from the sponsor submitting the
biomarker qualification application.

One area where these criteria of broad applicability and wide
interest are met is for safety biomarkers. Clearly, a parameter that
could predict toxicity issues, such as the liver toxicities discussed
in Section 6, reliably or in advance would be of mutual interest to
sponsors and regulators and, hence, these are good candidates
for qualification processes. Given that the body of evidence is
large and that the adverse events considered are often rare, prec-
ompetitive collaborations offer the best chance of compiling the
materials required for this and the preclinical nephrotoxicity work
such as that by ILSI/HESI offer a template [72, 107, 108].

Documents on such EMA consultations are publically available
on the EMA website, where details of the first qualification opin-
ion on a marker in humans have been released as a draft consul-
tation [109]. This concerns cerebral spinal fluid markers to enable
the selection of Alzheimer’s disease patients for inclusion in clini-
cal trials in Prodromal AD. Such use of a baseline marker to define
disease characteristics is more conducive to the use of a qualifica-
tion process compared with a predictive marker related to drug
mechanism. The example also demonstrates how it is possible for
a single sponsor to drive this process. Although examples of for-
mally qualified biomarkers are rare and few have been discussed
at length with regulators at this early stage, clearly the idea of evi-
dentiary standards should be endorsed by all and fit-for-purpose
validation should practiced whatever the situation. There may
only be certain situations where this kind of formal qualification

is necessary and further clarification from regulators of when it
might be expected or encouraged could be beneficial. Guidance
could also be extended to suggest what evidence should be sub-
mitted in addition to the procedures for doing so and how this
would fit alongside other channels for receiving scientific advice.

CONCLUSIONS

Biomarker research is an area of critical importance within the
pharmaceutical discovery and development process, but also an
area of high uncertainty given the novelty of many of the appli-
cations and technologies used. As biomarker research is typically
data-intensive, statisticians play a vital role in the development
of new biomarkers and require a good working knowledge of
the common issues, which they are well placed to understand
and explain. As with any aspect of pharmaceutical discovery or
development, the key concepts of statistical best practice should
be maintained and high standards should be demanded, even
in exploratory work. A consideration of first principles can be
instructive and assist in tackling common issues. Keeping this
in mind, we have provided a list of key points that statisticians
should consider (Table III).

Much attention has focused on biomarker terminology and the
potential of biomarkers as surrogate endpoints or to realize PHC.
Collaboration can be vital in potentially achieving these aims.
However key is that regardless of whether formal qualification or
usage is sought for a biomarker, researchers should still follow the
principles of fit for purpose validation, keeping the objectives in
mind at all times. The ideas of understanding the characteristics
of a potential endpoint and investigating subsequently observed
data should remain familiar to statisticians in any context.

Table III. Key considerations for statisticians in biomarker development.

� Ensure the primary question of interest is well defined; even in exploratory research clear objectives are essential
as it may not be safe to assume that the biomarker taxonomy is used in the same way by all. The future potential
purposes that the marker will be put to should shape objectives and suggest appropriate study designs.

� Ensure biomarker studies have a reasonable chance of success through prospective planning, even where
biomarkers are considered to be exploratory. With this in mind, it is useful to specify a meaningful biomarker effect
size.

� Consult expert colleagues in order to get a good knowledge of likely distributions and pre- processing
methods and to shape the choice of endpoint and scoring methodology prior to studies being run.

� Gather prior knowledge on sources of variability and causes of missing data when designing studies. Demand
high standards of study conduct and sample and data management to avoid such scenarios and adjust modeling
and missing data assumptions accordingly.

� As well as practical experience, estimates of variability and likely effect sizes should be gained via
methodology studies, which should reflect the practice of intended formal use. Preclinical and translation sources
are also valuable.

� Analyse a biomarker using the appropriate methodology for the given endpoint type and objective. As with
other endpoints there is no universal approach and the characteristics of the endpoint should be considered.

� Particular attention should be paid to issues of multiplicity and model validation in situations where large
numbers of candidate biomarkers are proposed.

� A skeptical and questioning point of view can be healthy to prevent results being interpreted out of
context. Consider results in relation to the prior knowledge and restrict conclusions to sensible levels. (Manage
expectations in terms of surrogacy for example).

� In exploratory studies where numerous candidate biomarkers are being evaluated, consider how to add
confidence to the results though the use of other data resources, integration with biological information and
cross-validation.5
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Although the application and technologies underlying biomark-
ers may be new, many of the issues, such as the effects of mea-
surement error, missing data or confounders, can be addressed
using principles and approaches familiar to statisticians expe-
rienced in data analysis within a pharmaceutical environment:
understanding the questions and issues being asked, appropri-
ate experimental or study design to address these questions,
followed by robust and correct analysis of any data generated,
taking into account any particular features of the data arising
from the technology or the study and accurate communication
of the results and the implications of any conclusions.
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